数学建模学习(8):单目标和多目标规划

chatgpt/2023/10/4 7:55:09

优化问题描述

优化

优化算法是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小值

线性规划

线性规划是指目标函数和约束都是线性的情况

[x,fval]=linprog(f,A,b,Aeq,Beq,LB,UB)
x:求得最优情况下变量的解
fval:求得最优目标值
f:目标函数的系数(符号按最小值标准,若目标是求解机大值可以通过添加负号改成求极小值)
A:不等式约束的变量系数(符合按小于标准,如果是大于约束可通过加负号变成小于)
b:不等式约束的常量
Aeq:等式约束的变量系数Beq:等式约束的常量LB:变量的下限UB:变量的上限

%% 线性规划
clc;clear;close all;
%目标函数/max 要改成min 的形式,max最大值可以系数加个负号的变成求min
f=[-1;-2;3];   %不等约束  /化成标准形式   x1+x2<=
% -x1-x2+0*x3<=-3
%0*x1-x2-x3<=-3
A=[-1,-1,0;0,-1,-1];%左边特征矩阵
b=[-3;-3]; %右边%等式约束
Aeq=[1,0,1];  
Beq=[4];%变量约束,上限,下限
LB=zeros(3,1);
UB=2*ones(3,1);%优化
[x,fval]=linprog(f,A,b,Aeq,Beq,LB,UB);
%
objstr=['目标函数最优值:',num2str(fval)];
disp(objstr)
for i=1:length(x)xstr=['x',num2str(i),'的值为:',num2str(x(i))];disp(xstr)
end

非线性规划

非线性规划是指目标函数和约束有非线性的情况

 

%% 非线性规划1
clc;clear;close all;
%初始解,随意给个初始解
x0=zeros(3,1);%不等约束
A=[2,1,3];%左边特征矩阵
b=[6]; %右边%描述线性 
%等式约束
Aeq=[];
Beq=[];%变量约束,上限,下限
LB=zeros(3,1);
UB=1*ones(3,1);%
%优化求解 max 加负号  
fun = @(x)-x(1)^2+x(2)^2-x(2)*x(3);
%
nonlcon = @unitdisk;
[x,fval]=fmincon(fun,x0,A,b,Aeq,Beq,LB,UB,nonlcon);objstr=['目标函数最优值:',num2str(-fval)];%num2str 数字变成字符
disp(objstr)
for i=1:length(x)xstr=['x',num2str(i),'的值为:',num2str(x(i))];disp(xstr)
endfunction [c,ceq] = unitdisk(x)
%c为不等式非线性约束
%ceq为等式非线性约束
c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
%多个非线性约束的话,可以用[约束1;约束2];
ceq = [];
end%%
%遇到较为复杂的目标函数
%可以写为函数的形式
fun = @obj;
function y = obj(x)y1 = x(1)^2+x(2)^2;y = sqrt(y1)+x(3)^3;
end
%%

多目标优化

 

多目标求解的第一种方法:

%% 非线性规划1
clc;clear;close all;
%%
%初始解,随意给个初始解
x0=zeros(3,1);%不等约束
A=[2,1,3];%左边特征矩阵
b=[6]; %右边%等式约束
Aeq=[];
Beq=[];%变量约束,上限,下限
LB=zeros(3,1);
UB=1*ones(3,1);
%优化求解
%%
w1=0.5;w2=0.5;
fun = @(x)(-x(1)^2+x(2)^2-x(2)*x(3))*w1+(2*x(1)^2-x(2)^3+2*x(2)*x(3))*w2;nonlcon = @unitdisk;
[x1,fval1]=fmincon(fun,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval1)];
disp(objstr)
for i=1:length(x1)xstr=['x',num2str(i),'的值为:',num2str(x1(i))];disp(xstr)
endfunction [c,ceq] = unitdisk(x)
%c为不等式非线性约束
%ceq为等式非线性约束
c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
ceq = [];
end

多目标求解的第二种方法

%% 非线性规划1
clc;clear;close all;
%%
%初始解,随意给个初始解
x0=zeros(3,1);%不等约束
A=[2,1,3];%左边特征矩阵
b=[6]; %右边%等式约束
Aeq=[];
Beq=[];%变量约束,上限,下限
LB=zeros(3,1);
UB=1*ones(3,1);
%优化求解
%%
fun1 = @(x)-x(1)^2+x(2)^2-x(2)*x(3);
fun2 = @(x)2*x(1)^2-x(2)^3+2*x(2)*x(3);
%%
nonlcon = @unitdisk;
[x1,fval1]=fmincon(fun1,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval1)];
disp(objstr)
for i=1:length(x1)xstr=['x',num2str(i),'的值为:',num2str(x1(i))];disp(xstr)
end
[x2,fval2]=fmincon(fun2,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval2)];
disp(objstr)
for i=1:length(x2)xstr=['x',num2str(i),'的值为:',num2str(x2(i))];disp(xstr)
end
%% 多目标规划
goal=[fval1,fval2];
func = @(x)[-x(1)^2+x(2)^2-x(2)*x(3);2*x(1)^2-x(2)^3+2*x(2)*x(3)];
weight=[1,1];
[x,fival]=fgoalattain(func,x0,goal,weight,A,b,Aeq,Beq,LB,UB,nonlcon);
disp('在两个目标的优化结果为')
disp(func(x))
for i=1:length(x)xstr=['x',num2str(i),'的值为:',num2str(x(i))];disp(xstr)
end
%%
function [c,ceq] = unitdisk(x)
%c为不等式非线性约束
%ceq为等式非线性约束
c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
ceq = [];
end

%% 非线性规划1
clc;clear;close all;
%%
%初始解,随意给个初始解
x0=zeros(10,1);%不等约束
A=[];%左边特征矩阵
b=[]; %右边%等式约束
Aeq=[];
Beq=[];%变量约束,上限,下限
LB=-1*ones(10,1);LB(1)=0;
UB=1*ones(10,1);
%优化求解
%%
fun1 = @obj1;
fun2 = @obj2;
%%
nonlcon = [];
[x1,fval1]=fmincon(fun1,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval1)];
disp(objstr)
for i=1:length(x1)xstr=['x',num2str(i),'的值为:',num2str(x1(i))];disp(xstr)
end
[x2,fval2]=fmincon(fun2,x0,A,b,Aeq,Beq,LB,UB,nonlcon);
objstr=['目标函数最优值:',num2str(fval2)];
disp(objstr)
for i=1:length(x2)xstr=['x',num2str(i),'的值为:',num2str(x2(i))];disp(xstr)
end
%% 多目标规划
goal=[fval1,fval2];
func = @obj3;
weight=[1,1];
[x,fival]=fgoalattain(func,x0,goal,weight,A,b,Aeq,Beq,LB,UB,nonlcon);
disp('在两个目标的优化结果为')
disp(func(x))
for i=1:length(x)xstr=['x',num2str(i),'的值为:',num2str(x(i))];disp(xstr)
end
%%
function y1=obj1(x)[dim, num]  = size(x);tmp         = zeros(dim,num);tmp(2:dim,:)= (x(2:dim,:) - sin(6.0*pi*repmat(x(1,:),[dim-1,1]) + pi/dim*repmat((2:dim)',[1,num]))).^2;tmp1        = sum(tmp(3:2:dim,:));  % odd indextmp2        = sum(tmp(2:2:dim,:));  % even indexy1      = x(1,:)             + 2.0*tmp1/size(3:2:dim,2);
%     y(2,:)      = 1.0 - sqrt(x(1,:)) + 2.0*tmp2/size(2:2:dim,2);
end
function y2=obj2(x)[dim, num]  = size(x);tmp         = zeros(dim,num);tmp(2:dim,:)= (x(2:dim,:) - sin(6.0*pi*repmat(x(1,:),[dim-1,1]) + pi/dim*repmat((2:dim)',[1,num]))).^2;tmp1        = sum(tmp(3:2:dim,:));  % odd indextmp2        = sum(tmp(2:2:dim,:));  % even index
%     y2      = x(1,:)             + 2.0*tmp1/size(3:2:dim,2);y2      = 1.0 - sqrt(x(1,:)) + 2.0*tmp2/size(2:2:dim,2);
end
function y=obj3(x)[dim, num]  = size(x);tmp         = zeros(dim,num);tmp(2:dim,:)= (x(2:dim,:) - sin(6.0*pi*repmat(x(1,:),[dim-1,1]) + pi/dim*repmat((2:dim)',[1,num]))).^2;tmp1        = sum(tmp(3:2:dim,:));  % odd indextmp2        = sum(tmp(2:2:dim,:));  % even indexy(1,:)      = x(1,:)             + 2.0*tmp1/size(3:2:dim,2);y(2,:)      = 1.0 - sqrt(x(1,:)) + 2.0*tmp2/size(2:2:dim,2);
end
% function [c,ceq] = unitdisk(x)
% %c为不等式非线性约束
% %ceq为等式非线性约束
% c=x(1)^2+x(1)*x(2)+x(2)*x(3)-x(2)-6;
% ceq = [];
% end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.exyb.cn/news/show-5313491.html

如若内容造成侵权/违法违规/事实不符,请联系郑州代理记账网进行投诉反馈,一经查实,立即删除!

相关文章

ORB-SLAM3数据集配置与评价

在ORB-SLAM3运行EuRoC和TUM-VI数据集并作以评价。EuRoC利用微型飞行器(MAV ) 收集的视觉惯性数据集&#xff0c;TUM-VI 是由实验人员手持视觉-惯性传感器收集的数据集。这两个是在视觉SLAM中比较常用的公开数据集&#xff0c;所以测试并加以记录。 文章目录 一、EuRoC数据集测…

chmod命令详细使用说明

chmod命令详细使用说明 chmod是Unix和类Unix系统上用于更改文件或目录权限的命令。它是"change mode"的缩写。在Linux和其他类Unix操作系统中&#xff0c;文件和目录具有权限位&#xff0c;用来控制哪些用户可以访问、读取、写入或执行它们。chmod命令允许用户修改这…

通过performance分析mysql内存占用

在 MySQL 使用过程中&#xff0c;偶尔会出现OOM、内存异常突增等异常现象。为了排查内存异常&#xff0c;我们需要分析内存占用情况&#xff0c;找出内存占用的具体事件。我们可以从以下几张performance下的表分析内存&#xff0c;每张表对应不同的维度&#xff0c;有用户维度、…

访问 Hive 的元数据存储(MetaStore)的API方式

访问 Hive 的元数据存储&#xff08;MetaStore&#xff09;的API方式 访问 Hive 的元数据存储&#xff08;MetaStore&#xff09;是通过 Hive 的 Thrift API 来实现的。Thrift 是一个跨语言的远程服务调用框架&#xff0c;它可以让不同编程语言之间进行跨语言的远程过程调用&a…

机器学习02-再识K邻近算法(自定义数据集训练及测试)

定义&#xff1a; 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别&#xff0c;则该样本也属于这个类别。简单的说就是根据你的“邻居”来推断出你的类别。 用个成语就是物以类聚 思想&#xff1a; 如果一个样本在特征空间中的K个最…

【Java】SpringBoot项目整合FreeMarker加快页面访问速度

文章目录 什么是FreeMarker&#xff1f;它的优点有那些&#xff1f;使用方式 什么是FreeMarker&#xff1f; Freemarker是一个模板引擎技术&#xff0c;它可以将数据和模板结合起来生成最终的输出。它是一种用于生成文本输出&#xff08;如HTML、XML、JSON等&#xff09;的通用…

【学习笔记】目标跟踪领域SOTA方法比较

目录 前言方法1 TraDeS:2 FairMOT:3 SMILEtrack:4 ByteTrack: 前言 常用于行人跟踪的多目标跟踪数据集包括&#xff1a;MOT 15/16/17/20、PersonPath22等… 为更好比较现有SOTA算法的检测性能&#xff0c;本博客将针对在各数据集上表现较优的算法模型进行介绍。&#xff08;表…

机器学习深度学习——Dropout

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——权重衰减 &#x1f4da;订阅专栏&#xff1a;机器学习&&深度学习 希望文章对你们有所帮助 Drop…
推荐文章