Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用

chatgpt/2023/9/26 14:02:58

系列文章目录

PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解


文章目录

  • 系列文章目录
  • 一、池化操作是什么?
  • 二、torch.nn.MaxPool2d介绍
    • 1.相关参数
    • 2.最大池化处理上述矩阵并验算结果
    • 3.最大池化处理CIFAR10数据集图片


一、池化操作是什么?

池化操作是卷积神经网络(CNN)中的一种常用操作,用于减小特征图的尺寸,并提取出最重要的特征。它通过在特定区域内进行汇总或聚合来实现这一目标。

常见的池化操作有最大池化(Max Pooling)和平均池化(Average Pooling)。最大池化在每个区域内选择最大值作为池化结果,而平均池化则取区域内数值的平均值。这两种池化操作都通过滑动窗口在特征图上移动,并在每个窗口内进行池化操作。

池化操作的主要作用有两个方面:

特征降维:通过减小特征图的尺寸,减少了后续层的计算量和参数数量,有助于降低过拟合风险。
提取主要特征:通过选择最大值或求平均值,池化操作可以提取出最显著的特征,有助于保留重要信息并抑制噪声。

以最大池化操作作为示例如下:
在这里插入图片描述

二、torch.nn.MaxPool2d介绍

1.相关参数

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

kernel_size:表示池化核的大小,类型为int 或者元组。
stride=None:表示步长的大小,与卷积层不同,池化层步长大小默认为kernel_size的大小
padding=0:表示在输入图像外围增加一圈0,和前面卷积核一样。
dilation=1:表示设置核的膨胀率,默认 dilation=1,即如果kernel_size =3,那么核的大小就是3×3。如果dilation = 2,kernel_size =3×3,那么每列数据与每列数据,每行数据与每行数据中间都再加一行或列数据,数据都用0填充,那么核的大小就变成5×5。
return_indices=False:表示用来控制要不要返回最大值的索引位置,如果为true,那么要记住最大池化后最大值的所在索引位置,后面上采样可能要用上,为false则不用记住位置。
ceil_mode=False:表示计算输出结果形状的时候,是使用向上取整还是向下取整。即要不要舍弃无法覆盖核的大小的数值。
注意 输入和输出的input需要为NCHW或者CHW
如下官网图所示
在这里插入图片描述

2.最大池化处理上述矩阵并验算结果

当设置ceil_mode=True时
示例代码如下:

import torch
from torch import nninput = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]],dtype=float)  # 使用dtype将此矩阵的数字变为浮点型
# 准备的参数情况
print(input.shape)  # torch.Size([5, 5])
# 进行reshape
input = torch.reshape(input,(1,5,5))  # 修改shape为chw
print(input.shape)  # torch.Size([1, 5, 5])# 搭建神经网络并进行池化操作
class Lgl(nn.Module):def __init__(self):super(Lgl,self).__init__()self.maxpool2 = nn.MaxPool2d(kernel_size=3,ceil_mode=True)def forward(self,input):return self.maxpool2(input)# 实例化
l = Lgl()
output = l(input)
print(output)
torch.Size([5, 5])
torch.Size([1, 5, 5])
tensor([[[2., 3.],[5., 1.]]], dtype=torch.float64)

2,3,5,1 刚好符合ceil_mode=True时的情况

当设置ceil_mode=False时
示例代码如下:

import torch
from torch import nninput = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]],dtype=float)  # 使用dtype将此矩阵的数字变为浮点型
# 准备的参数情况
print(input.shape)  # torch.Size([5, 5])
# 进行reshape
input = torch.reshape(input,(1,5,5))  # 修改shape为chw
print(input.shape)  # torch.Size([1, 5, 5])# 搭建神经网络并进行池化操作
class Lgl(nn.Module):def __init__(self):super(Lgl,self).__init__()self.maxpool2 = nn.MaxPool2d(kernel_size=3,ceil_mode=False)def forward(self,input):return self.maxpool2(input)# 实例化
l = Lgl()
output = l(input)
print(output)
torch.Size([5, 5])
torch.Size([1, 5, 5])
tensor([[[2.]]], dtype=torch.float64)

此时输出2,符合上述手算推导。

3.最大池化处理CIFAR10数据集图片

示例代码如下:

在这里插入代码片

进行最大池化前
在这里插入图片描述
进行最大池化后
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.exyb.cn/news/show-5313993.html

如若内容造成侵权/违法违规/事实不符,请联系郑州代理记账网进行投诉反馈,一经查实,立即删除!

相关文章

微信如何提高回复信息速度?

规范流程话术有什么用?为了提高回复客户的效率和质量,可以事先设计好的一套标准化的对话模板。它通常包括多个环节和问题,帮助客服人员或销售人员在与客户沟通时,按照标准化的流程进行,以提高工作效率和客户满意度。 如…

docker 安装 active Mq

在安装完Docker的机器上,安装activeMQ。 拉取镜像: docker pull webcenter/activemq 查看镜像: docker images Docker运行ActiveMQ镜像 docker run --name activemq -d -p 8161:8161 -p 61616:61616 --privilegedtrue --restartalways …

师从美国四院院士|遗传学老师赴哥伦比亚大学访问交流

H老师为省公派访学,目标为美国知名高校,最终我们获得了哥伦比亚大学的邀请函,导师是美国科学院院士、美国艺术与科学院院士、美国微生物学院院士、美国科学促进会会士等四个学会的院士,堪称学术界的超级大牛。 H老师背景&#xff…

【Ansible 的脚本 --- playbook 剧本】

目录 一、playbook 剧本介绍二、示例1、运行playbook2、定义、引用变量 三、使用playbook部署lnmp集群 一、playbook 剧本介绍 playbooks 本身由以下各部分组成 (1)Tasks:任务,即通过 task 调用 ansible 的模板将多个操作组织在…

Python+requests+unittest执行接口自动化测试详情

这篇文章主要介绍了Pythonrequestsunittest执行接口自动化测试详情&#xff0c;文章围绕主题展开详细的内容介绍&#xff0c;具有一定的参考价值&#xff0c;需要的朋友可以参考一下 1、安装requests、xlrd、json、unittest库 <1>pip 命令安装&#xff1a; pip install …

如何排查 IDEA 自身报错?| 以 IntelliJ IDEA 2023.1.4 无法刷新项目 Maven 模块的问题为例

这个问题是 2023 年 7 月 26 日遇到的&#xff0c;当时还是 IDEA 2023.1.4&#xff0c;结果文章还没写完&#xff0c;7 月 27 日自动给更新了 IDEA 2023.2。问题估计解决了。 所以&#xff0c;本文就简单提一下 IDEA 自身报错的排查方法。 规避/解决方式 先说问题怎么处理&am…

leetcode1219. 黄金矿工(java)

黄金矿工 leetcode1219. 黄金矿工题目描述回溯算法代码 回溯算法 leetcode1219. 黄金矿工 难度: 中等 eetcode 1219 黄金矿工 题目描述 你要开发一座金矿&#xff0c;地质勘测学家已经探明了这座金矿中的资源分布&#xff0c;并用大小为 m * n 的网格 grid 进行了标注。每个单元…

[Docker实现测试部署CI/CD----相关服务器的安装配置(1)]

目录 0、CI/CD系统最终架构图规划IP地址 1、git配置Git下载pycharm配置gitidea配置git 2、GitLab安装与配置主机要求拉取镜像定义 compose.yml启动gitlab浏览器访问并修改密码查看登录密码修改密码 3、SonarQube 安装与配置拉取镜像修改虚拟内存的大小启动SonarQube登录 SonarQ…
推荐文章