【多模态】23、RO-ViT | 基于 Transformer 的开发词汇目标检测(CVPR2023)

chatgpt/2023/9/27 15:46:27

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 基础内容
      • 2.2 Region-aware Image-text Pretraining
      • 2.3 Open-vocabulary Detector Finetuning
    • 三、效果
      • 3.1 细节
      • 3.2 开放词汇目标检测效果
      • 3.3 Image-text retrieval
      • 3.4 Transfer object detection
      • 3.5 消融实验

论文:Region-Aware Pretraining for Open-Vocabulary Object Detection with Vision Transformers

代码:暂无

出处:CVPR2023

贡献:

  • 本文提出的 RO-ViT 解决了 image-text pretraining 到 open-vocabulary object finetuning 之间的 positional embedding 问题
  • 证明了 image-text pretraining 使用 focal loss 比 CE loss 更好
  • 使用 novel object proposals 提高了开放词汇目标检测 fine-tuning 效果
  • 在 LVIS 上得到 SOTA 32.4 APr,超越了当前最好的方法 6.1 APr

一、背景

近期,open-vocabulary detection task (OVD) 得到了很多关注,其被提出是为了解决传统目标检测的限制性,开放词汇目标检测最大的特点是将类别看做 text embedding,而不是离散的 id,所以,开放词汇目标检测能够更灵活的预测在训练过程中没见过的类别。

现有的很多方法是使用大量的 image-text pairs 来进行预训练,为模型引入丰富的语义信息,很多方法用的是 CNN,但随着对图像理解的更强的需求和多模态任务的出现,使用 vision transformer 来实现也很重要

我们已知现有的方法很多都是使用预训练好的 vision-language model,然后再微调一下来解决 image-level 预训练和 object-level fine-tuning 之间的 gap

本文提出了 RO-ViT,将预训练好的 vision transformer 迁移到 region-aware 上来实现开放词汇的目标检测

本文和前面的方法最大的不同在于,本文作者探索了如何更好的使用 vision transformer 来预训练 VLMs,更好的适用于开放词汇检测

然后使用预训练的权重来初始化检测器的 backbone,将 backbone 冻住后训练检测器的 neck 和 head 等特殊部件

二、方法

在这里插入图片描述

2.1 基础内容

1、contrastive image-text pretraining

一般的对比学习都是 two-tower 的结构,由 image encoder 和 text encoder 构成

  • image encoder:可以是 CNN 或者 ViT 的
  • text encoer:一般是 transformer 的

对比学习的目标是在 embedding space 中,将一对儿的 image-text 距离拉近,非一对儿的 image-text 距离拉远

一般使用的 loss 是 softmax CE loss

2、开放词汇目标检测

使用基础类别训练,但是测试的时候需要同时能够检测基础类别和新类别

一般的方法就是将原本的固定尺寸的全连接分类器使用 text embedding 来替换,因为 text embedding 来自于预训练的 text encoder 中,所以预训练中的开放语义知识能很好的保留

作者对于 background 类别使用 “background” 词汇来作为类别词汇

训练过程中,作者会给每个 region r r r 计算对应的 detection score p i p_i pi,计算方法是计算 RoI-Align feature(region embedding)和基础类别的 text embedding 的 cosine similarity,然后使用 softmax 规范化

在测试过程中,text embedding 扩展到了基础类别和新类别的 embedding,并且加上了 background,在 ViT backbone的输出 feature map 上使用 RoI-Align 来获得region i i i 的 VLM embedding,并且计算这个区域 embedding 和 text embedding 的 cosine similarity,得到 region score z i z_i zi,detection score 计算如下, α , β ∈ [ 0 , 1 ] \alpha, \beta \in [0,1] α,β[0,1] 用了控制基础类别和新类别的 weights

作者使用预训练好的 ViT 模型来初始化 detector 的 backbone

2.2 Region-aware Image-text Pretraining

现有的 vision-language model 基本上都是使用整张图和 text 来进行匹配

然而,这种预训练没有考虑到 region-level 特征和 text token 之间的关系,而这种关系又对开发词汇目标检测很重要

所以,作者提出了一种新的 Cropped Positional Embedding(CPE)的方法来解决 image 和 region 之间的 gap,并且发现使用 focal loss 从难样本中挖掘很有益处

CPE:

  • transformer 中,positional embedding 是很重要的,能够保留每个元素的相对位置,这种信息对下游的识别和定位任务都很重要
  • 但现有的 contrastive pretraining 和 open-vocabulary detection fine-tuning 的 positional embedding 之间有一定的不对齐,pretraining 方法一般都在训练时对全图位置进行编码,在下游的任务也是使用全图的位置编码。但是 detection fine-tuning 中,需要将全图的位置编码泛化到 region 的编码

为了解决这个 gap,作者提出了 CPE,如图 2 所示:

  • 首先,对于 pretraining,将 positional embedding 从图像大小(224)上采样到检测任务大小(如 1024)
  • 然后,从上采样的 positional embedding 中随机 crop 一个 region 并 resize,来作为预训练时候的 image-level 的 positional embedding
  • 这样一来,就能让模型将图像看做从更大的未知图像中随机 crop 出的 region,而非一个整图,能更好的适应于下游检测任务

在这里插入图片描述

CPE 可视化:

  • 每个小格子是一个 patch 和其他 patches 的余弦相似度
  • 相近的 patches 有着更相似的位置编码

在这里插入图片描述

Focal loss:

作者认为更细致的控制 hard 样本的权重比使用 CE loss 更好

假设:

  • v i v_i vi l i l_i li 是归一化后的 image embedding 和 text embedding

  • Image-to-text(I2T)对比学习 loss 分别设置为 CE loss 和 Focal loss 来对比,公式如下

  • Text-to-image(T2I)对比学习 loss 和 I2T 的是对称的

    在这里插入图片描述

  • 总 loss 是两个 loss 之和

2.3 Open-vocabulary Detector Finetuning

虽然 backbone 可以使用预训练权重来初始化,但检测器的 neck 和 head 还是全新的

现有的方法一般不会对新类或未标注的类进行 proposal generation

但本文提出了一个新的生成 proposal 的方法,使用 localization quality-based objectness(如 centerness 等)来衡量 proposal 的得分,而不是使用 object-or-not 的二分类得分来衡量

OVD score: S i O V D = o i δ . s i O V D S_i^{OVD}=o_i^{\delta} .s_i^{OVD} SiOVD=oiδ.siOVD o i δ o_i^{\delta} oiδ 是预测的 objectness score

三、效果

3.1 细节

预训练:

  • 本文的 pretraining 是作者从头训练的,使用 ViT-B/16 和 ViT-L/16 来作为 image encoder
  • 输入图像大小为 224x224,patch size 为 16x16,共 14x14 个 positional embedding
  • 为了生成 CPE,作者首先将 positional embedding 插值到 64x64,然后随机 crop 一个 region(scale ratio 为 [0.1,1.0],aspect ration 为 [0.5, 2.0]),然后将 region crop resize 为 14x14,驾到 patch embedding 上
  • 在 ViT 最后一层使用 global average pooling 来得到 image embedding
  • text encoder 是 12 层的 transformer,最长的 text encoder 是 64
  • 数据集:LAION-2B [44]

下游检测的细节:

  • LVIS: iters = 46.1k,img size =1024,batch = 256,SGD weight decay 1e-4,lr 0.36,momentum=0.9
  • COCO:iters = 11.3k,img size =1024,batch = 128,SGD weight decay 1e-2,lr 0.02,momentum=0.9
  • 使用 CLIP prompt 模版,对每个类别的 text embedding 求平均
  • 在 RPN 阶段使用 OLN-RPN,使用 centerness 作为 objectness,每个位置上有一个 anchor,使用 IoU loss,RPN NMS 在训练时 threshold=0.7,测试时为 1.0

3.2 开放词汇目标检测效果

LVIS:

  • 使用基础类别训练,rare 类别作为新类来测试,测试了 3 次取了平均
  • APr 取得 32.4

在这里插入图片描述

COCO:

  • 使用 48 个基础类别训练,17 个新类测试

在这里插入图片描述

3.3 Image-text retrieval

zero-shot image-text retrieval on coco and Flickr30k

在这里插入图片描述

3.4 Transfer object detection

在这里插入图片描述

3.5 消融实验

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.exyb.cn/news/show-5314647.html

如若内容造成侵权/违法违规/事实不符,请联系郑州代理记账网进行投诉反馈,一经查实,立即删除!

相关文章

[软件工程] 全局分析规格说明书模板

1 价值需求 描述目标系统的价值需求,可以附上商业模式画布。 1.1 利益相关者 描述目标系统的利益相关者,包括终端用户、企业组织、投资人等。 1.2 系统愿景 描述利益相关者共同达成一致的愿景,该愿景的描述需要对准企业的战略目标。 1.3 系统…

【ChatGPT】ChatGPT是如何训练得到的?

前言 ChatGPT是一种基于语言模型的聊天机器人,它使用了GPT(Generative Pre-trained Transformer)的深度学习架构来生成与用户的对话。GPT是一种使用Transformer编码器和解码器的预训练模型,它已被广泛用于生成自然语言文本的各种…

python rocketmq-client-python 包的使用

ubuntu安装 这个包目前仅支持linux以及mac wget https://github.com/apache/rocketmq-client-cpp/releases/download/2.0.0/rocketmq-client-cpp-2.0.0.amd64.deb sudo dpkg -i rocketmq-client-cpp-2.0.0.amd64.deb sudo pip3 install rocketmq-client-python生产者 from ro…

Linux 查看服务器内存、CPU、网络等占用情况的命令

1、查看物理CPU个数:cat cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l 2、查看服务器CPU内核个数:cat 每个物理CPU中core的个数(即核数) cat /proc/cpuinfo | grep "cpu cores" | u…

Nazrin the Greeeeeedy Mouse(2023牛客暑期多校训练营5)

链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 Therere nn cheeses in the house. The ii-th cheese is between point ii and point i1i1. The ii-th cheeses size is aiai​and its weight is bibi​. 房子里有 nn 奶酪。 ii -th奶酪介于点…

大数据课程D4——hadoop的YARN

文章作者邮箱:yugongshiyesina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解YARN的概念和结构; ⚪ 掌握YARN的资源调度流程; ⚪ 了解Hadoop支持的资源调度器:FIFO、Capacity、Fair; ⚪ 掌握YA…

我的会议(会议通知)

前言: 我们在实现了发布会议功能,我的会议功能的基础上,继续来实现会议通知的功能。 4.1实现的特色功能: 当有会议要参加时,通过查询会议通知可以知道会议的内容,以及当前会议状态(未读) 4.2思路…

智慧水务配电能效系统的开发与功能介绍

随着城市化进程的步伐大大变快,城市建设与科学信息技术的融合程度也在不断提升,尤其是大数据信息技术的迅猛发展,为民生工程由信息化向智能化转型提供了条件。以城市的水务系统为例,依托大数据信息技术构建智慧水务系统是智慧城市…
推荐文章